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Abstract—We introduce TGAvatar, a novel framework for 3D
head animation and reconstruction that revolutionizes the use of
3D Gaussian Splatting (3DGS). TGAvatar significantly advances
rendering quality by leveraging the intricate properties of 3DGS
to achieve detailed and realistic representations of human head
geometries and textures. We use an innovative application of
linear blending techniques to imitate 3D Morphable Model
(3DMM) coefficients within 3DGS, thereby enabling precise
and dynamic facial feature and expression modeling. Further
enhancing TGAvatar’s capabilities, a transformer based tri-plane
module is incorporated to accurately infer spherical harmonics
and alpha parameters. This integration is pivotal for the method,
as it allows allows us to efficiently and precisely represent
the visual characteristics of gaussians, tailored specifically to
the intricate details of the head’s components. Our exhaustive
evaluations show that TGAvatar not only elevates the fidelity
and realism of 3D head reconstructions but also sets a new
standard by surpassing existing methods in rendering quality
and computational efficiency. Please see our project page at
https://hrg0417.github.io/TGAvatar/

Index Terms—3D Gaussian Splatting, facial animation, Com-
puter Vision, Deep Learning.

I. INTRODUCTION

THE digital recreation of human appearance, particularly
the accurate and lifelike rendering of human heads,

remains one of the most challenging and sought-after ob-
jectives in computer graphics, virtual reality, and augmented
reality. This endeavor, crucial for creating immersive virtual
experiences, telepresence, and digital entertainment, has seen
considerable advancements over the years. The advent of 3D
Morphable Models (3DMMs) marked a significant milestone
by providing a framework for synthesizing facial geometries
and expressions from a dataset of scanned 3D faces [2].
These models have been instrumental in pioneering the field,
enabling the generation of new faces through the manipulation
of a set of parameters controlling identity, expression, and
other facial attributes [3], [4].

However, as the demand for more realistic and dynamically
adaptable avatars grows, the limitations of traditional ap-
proaches become increasingly apparent. While 3DMMs excel
in capturing a wide range of facial variations, their reliance
on linear combinations of base models restricts their ability
to represent finer details and textures, particularly in real-time
scenarios or under varied lighting conditions. The emergence
of Neural Radiance Fields (NeRF) [5] and its subsequent
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adaptations [6]–[8] introduced groundbreaking methods for
rendering complex scenes with unprecedented detail and real-
ism. Following works expanded NeRF to the field of high-
definition facial characters and animation [9], [10]. These
techniques, leveraging the power of deep learning, have set
new standards for photorealistic rendering. Nonetheless, the
computational intensity required for training and rendering,
along with challenges in real-time adaptability and dynamic
content generation, highlights the need for innovative solutions
that balance fidelity, efficiency, and flexibility.

The development of 3D Gaussian Splatting (3DGS) [1]
has significantly boosted the efficiency of rendering in novel
view synthesis. In contrast to the neural implicit methods
such as Neural Radiance Fields (NeRF) [5], which capture
a 3D scene using position and viewpoint-dependent neural
networks, 3D Gaussian Splatting adopts Gaussian ellipsoids
as the modeling basis. This shift enables quicker rendering
because these ellipsoids can be directly transformed into
images through rasterization. Some follow-up works has ex-
tended 3DGS, enabling it to render dynamic scenes containing
temporal sequences [11]–[14]. Notably, several advancements
have also emerged in the field of facial animation, leveraging
the 3DGS framework to achieve high-fidelity and real-time
facial expressions and movements [15]–[18].

While existing 3D Gaussian Splatting (3DGS) and facial
animation methods have made significant strides in rendering
dynamic scenes and capturing intricate details, they often
struggle with flexibility in representing subtle facial expres-
sions. These methods typically employ an MLP module to
infer the parameter offsets for the Gaussian components [15],
[17], which can limit the model’s ability to capture the full
spectrum of facial nuances. Moreover, existing approaches
[17], [18] treat the alpha and spherical harmonic parameters
the same as other parameters, which may result in a lack
of flexibility in rendering subtle facial features, particularly
around the mouth and eyes. GaussianHead [15] utilized a
tri-plane module [19] to address this issue; however, the
parameters in their tri-plane module are not directly related to
the expression coefficients, which may lead to artifacts across
various expressions.

To address the issues raised above, we propose TGAvatar, a
novel framework that revolutionizes 3D head animation and
reconstruction by integrating the strengths of 3D Gaussian
Splatting (3DGS) [1] with advanced modeling techniques. By
employing a linear blending technique that imitates the coef-
ficient manipulation inherent in 3DMMs, TGAvatar achieves
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Fig. 1. TGAvatar reconstructs a 3D facial avatar from a monocular portrait video of a person. By leveraging 3D Gaussian Splatting [1], alongside 3DMM
feature blending and a transformer based tri-plane module, TGAvatar gan generate lifelike novel views and expressions of the digital avatar.

a dynamic and precise modeling of facial features and expres-
sions, , significantly enhancing the rendering quality of the
head avatars.

Moreover, the incorporation of a tri-plane module [19] in
TGAvatar marks a pivotal advancement, enabling the accurate
inference of spherical harmonics and alpha parameters. No-
tably, our tri-plane module utilizes a transformer architecture
conditioned on facial expressions, allowing it to effectively
capture facial details specific to different expressions. This
integration is critical for rendering photorealistic avatars under
a variety of lighting conditions, addressing one of the most
significant challenges in digital human representation. The
tri-plane module, which has demonstrated its efficiency and
expressive ability in past works [15], [20], [21], allows for a
nuanced understanding of lighting and shading, essential for
achieving lifelike renderings.

Our exhaustive evaluations and comparisons with exist-
ing methods underscore TGAvatar’s superiority in rendering
quality, computational efficiency, and the fidelity of 3D head
reconstructions. TGAvatar not only represents a significant
leap forward in the quest for realistic digital humans but also
establishes a new benchmark for the field. The implications
of our work are vast, promising to impact a wide range of
applications, from virtual and augmented reality to digital
filmmaking and beyond, where the realistic representation of
human characters is paramount.

In summary, this paper makes the following three main
contributions:

1) We introduced a novel method that integrates the princi-
ples of 3D Gaussian Splatting with techniques akin to those
found in 3D Morphable Models, enabling the rapid generation
of dynamic and realistic animations of facial expressions and
movements in real time.

2) We developed a sophisticated tri-plane module derived
from a transformer architecture, which significantly enhances
the lifelike quality and detail of digital faces. This innovation
allows our avatars to exhibit subtle shading and textural
variations, resulting in a more natural and realistic appearance.

3) We tested our method on multiple datasets, and our
results significantly outperform those reported in other studies,

achieving state-of-the-art performance in terms of detail and
efficiency for 3D reconstructions of human heads.

II. RELATED WORK

3D Head Avatar Reconstruction: The quest for accurate
3D facial reconstruction has significantly evolved from its
inception. Early efforts focused on geometric and photometric
methods, leading to the development of 3D Morphable Models
(3DMMs) by Blanz and Vetter [2], which offered a break-
through in generating facial geometries by linearly combining
a set of pre-scanned facial templates. While 3DMMs have
been instrumental in pioneering facial animation and recon-
struction, they often fall short in capturing high-fidelity details
and dynamic expressions, particularly under diverse lighting
conditions and extreme poses [3], [22], [23].

The limitations of traditional modeling techniques have
spurred interest in leveraging machine learning for facial re-
construction. Deep learning approaches [24]–[27] have shown
promise in capturing complex facial details beyond the capa-
bilities of 3DMMs. These methods utilize convolutional neural
networks to directly infer 3D facial structure from 2D images,
offering improved flexibility and detail.

NeRF based facial avatar: Recent advancements in scene
representation have been marked by the introduction of Neural
Radiance Fields (NeRF) by Mildenhall et al. [5]. NeRF’s
ability to synthesize photorealistic images from sparse input
data has revolutionized the field, leading to its application in
dynamic facial animation and reconstruction [9], [10], [28]–
[37]. Gafni et al. [9] introduced dynamic neural radiance fields
tailored for monocular 4D facial avatar reconstruction, which
captures the dynamic nuances of human faces, allowing for the
synthesis of novel head poses and expressions directly from
monocular video data. Park et al. [10] and Athar et al. [30]
leveraged casual photos or videos to create deformable NeRF
models, enabling photorealistic renderings of scenes with non-
rigid transformations. Athar et al. [28] and Gao et al. [29]
blended Neural Radiance Fields (NeRF) with 3D morphable
models (3DMMs) for creating controllable, photorealistic por-
trait videos, which enabled novel view synthesis and facial
expression manipulation using a low-dimensional expression
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space. Guo et al. [31] utilized audio features to condition a
dynamic neural radiance field, enabling the synthesis of photo-
realistic talking-head videos with volume rendering. However,
in order to render high-quality facial images, the complexity
of neural networks is relatively high, leading to increased
learning difficulty and computational demands.

To address these challenges, recent works have introduced
hybrid neural fields that leverage both implicit and explicit
data structures for scene representation. Explicit data structures
such as tri-planes [19], hex-planes [38], [39], and voxels
[40] are employed to alleviate the computational pressure on
neural networks, allowing these networks to focus more on
decoding semantic and intricate details of the scene. This
hybrid approach enables a more efficient rendering process,
particularly for complex scenes. Taken the advantages of
these hybrid methods, many studies related to facial avatars
have emerged [20], [41], [42]. Next3D [20] leveraged a
novel representation called Generative Texture-Rasterized Tri-
planes, which integrates fine-grained expression control of ex-
plicit mesh-driven deformation with the flexibility of implicit
volumetric representation for animatable portrait synthesis.
OTAvatar [41] proposed a method allows for the generation
of face avatars from just a single portrait image using a
tri-plane formulated volume rendering technique. Their core
innovation is the decoupling-by-inverting strategy which sep-
arates identity and motion in the latent code via optimization-
based inversion. HAvatar [42] introduced a parametric model-
conditioned NeRF for personalized 3D head avatar creation,
while a hybrid representation is developed that handles the
inconsistent shape issue prevalent in existing NeRF-based
avatar modeling methods, significantly enhancing animation
stability.

While Neural Radiance Fields (NeRF) have made notable
strides in photorealistic facial avatar reconstruction, they face
significant challenges. NeRF-based methods are computation-
ally intensive, often requiring substantial training time and
high-capacity neural networks to manage detailed renderings
and dynamic expressions. This makes real-time applications
challenging due to increased latency.

3D Gaussian Splatting: The exploration of 3D Gaussian
Splatting (3DGS) by Kerbl et al. [1] offers a novel solution,
balancing the need for detail fidelity with computational
efficiency, which overcomes the limitations of axis-aligned
mappings, significantly enhancing performance in complex
regions. The original 3DGS can only be used to render static
scenes, afterwards, some approaches [11]–[14] have expanded
the use of Gaussian representation for dynamic scene recon-
struction. However, these methods cannot be directly applied
to the reconstruction of facial avatars.

Recently, several subsequent studies [15]–[18] have further
explored the area of facial avatars based on 3DGS. Mono-
GaussianAvatar [16] leveraged a Gaussian deformation field
for animating head avatars, allowing for adaptable topology
and efficient rendering. The method demonstrated superior
performance in creating photorealistic avatars, maintaining
geometry stability, and effectively handling dynamic poses
and expressions. FlashAvatar [17] combined Gaussian splat-
ting with a 3D parametric face model, allowing for efficient

reconstruction and rapid rendering. This method provided
high visual quality with low computational costs, improving
rendering speed and efficiency over previous approaches.
GaussianBlendshapes [18] presented a Gaussian blendshape
representation which consists of a base neutral model and
expression blendshapes, all represented as 3D Gaussians. By
learning these blendshapes from monocular video input, the
approach is able to achieve realistic animations with high-
frequency details, outperforming existing NeRF and point-
based methods in terms of speed and quality. GaussianHead
[15] employed a motion deformation field to adapt to facial
ovements and a multi-resolution tri-plane to store appearance
information of the head.

GaussianBlendshapes [18] utilizes a 3DMM feature blend-
ing structure, similar to our approach. However, in their
approach, each blendshape corresponds to a separate Gaussian,
while our approach integrates feature blending within a single
Gaussian, and infer alpha and spherical harmonic (SH) via
a tri-plane module. Additionally, although GaussianHead [15]
also employs a tri-plane, it does not establish a connection
with expression coefficients. In our method, the tri-plane
utilizes expression coefficients as conditions, inferred through
a transformer, enhancing the representation of dynamic facial
attributes.

III. METHOD

In this section, we introduce our method for creating high-
fidelity, dynamic 3D head avatars using 3D Gaussian Splatting
(3DGS). Inspired by 3DMM, our approach employs feature
blending techniques within each Gaussian to determine pose,
rotation, and scale coefficients. To achieve superior rendering
results, we first use a transformer-based tri-plane decoder to
predict tri-plane features. Subsequently, we incorporate a tri-
plane module to extract hybrid features based on the pose
of each Gaussian. Finally, these hybrid features are fed into
an MLP network to infer opacity and spherical harmonics
coefficients.

In the following subsections, we introduce the preliminaries
of tri-plane and Gaussian Splatting in Section III-A, describe
the feature blending techniques in Section III-B, detail the
hybrid tri-plane representation in Section III-C, and outline
the training details and objectives in Section III-D.

A. Preliminary of Tri-plane and Gaussian Splatting

Tri-plane Hybrid 3D Representation: The tri-plane rep-
resentation aligns explicit features along three orthogonal
planes—XY, XZ, and YZ—with each plane having a res-
olution of N × N × C, where N is the spatial resolution
and C is the number of channels. Any 3D position x ∈ R3

is projected onto these planes, retrieving the corresponding
feature vectors Fxy, Fxz, Fyz via bilinear interpolation. These
vectors are then summed to form a single feature vector for
the position. A lightweight decoder, typically a small MLP,
interprets the aggregated features to output color and density,
which are used for neural volume rendering to produce RGB
images [19].
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Fig. 2. Method overview. TGAvatar process begins with the random initialization of a set of Gaussians with pose, rotation, and scale bases (P,Q, S) and
bias terms (p0, q0, s0). In addition, a transformer based tri-plane module is employed to ensure high-fidelity novel view synthesis. Specifically, we first use a
transformer-based tri-plane decoder to predict tri-plane features. Subsequently, we incorporate a tri-plane module to extract hybrid features based on the pose
of each Gaussian. Finally, these hybrid features are fed into an MLP network to infer opacity (α) and spherical harmonics coefficients(SH) in each gaussian.

The primary advantage of the tri-plane representation is
its efficiency. By shifting the bulk of expressive power into
the explicit features and keeping the decoder small, it sig-
nificantly reduces the computational cost compared to fully
implicit MLP architectures without sacrificing expressiveness.
This representation scales with O(N2) for feature planes, as
opposed to O(N3) for dense voxel grids, allowing higher
resolution features and greater detail within the same memory
footprint [19].

Gaussian Splatting: 3D Gaussian Splatting (3DGS) utilizes
anisotropic 3D Gaussian primitives to explicitly represent the
underlying structure of a scene [1]. Each Gaussian is defined
by its position (mean) x and a 3D covariance matrix Σ in
world coordinates:

G(x,Σ) = e−
1
2x

TΣ−1x. (1)

The covariance matrix Σ can be decomposed into a scaling
matrix S and a rotation matrix R, such that Σ = RSSTRT .
For optimization purposes, we represent S with a scaling
vector s and R with a unit quaternion q. Therefore, the
Gaussian function can be rewritten as G(x,q, s).

To render these 3D Gaussians onto a 2D image plane,
we transform the covariance matrix into camera coordinates.
This is achieved using the view transformation matrix W
and the Jacobian matrix J, which approximates the projective
transformation [43], [44]:

Σ′ = JWΣWTJT . (2)

The appearance of each Gaussian is influenced by two
additional parameters: opacity α and spherical harmonics
coefficients Ylm, which, when combined with the spherical
harmonics basis functions, represent view-dependent color.
The color C of a pixel on the camera plane is computed by
blending N ordered 3D Gaussians that overlap the pixel:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (3)

where ci and αi are the color and opacity of the i-th Gaussian,
respectively.

During the training process, the Gaussians undergo alternat-
ing densification or sparsification to address under- or over-
reconstruction. This adaptive density control ensures an accu-
rate and efficient representation of the scene by dynamically
adjusting the number and distribution of Gaussians.

The optimization process involves updating the position
x, the scaling vector s, the unit quaternion q, the opacity
α, and the spherical harmonics coefficients Ylm to minimize
the reconstruction error. The optimization is driven by a loss
function that combines L1 and perceptual loss components to
achieve high visual fidelity.

B. Feature Blending

Several existing approaches [15], [17] using MLP modules
to infer parameter offsets for Gaussian components. However,
these approaches often fall short in flexibly capturing the sub-
tlety of facial expressions. These methods may inadvertently
impose rigid constraints on how facial attributes are modeled,
thereby limiting the expressiveness achievable in animations.
Inspired by 3DMM, our approach employs a feature blending
technique within each Gaussian to enhance the animation and
rendering process. Our method blends pose, rotation, and scale
in each Gaussian. Intuitively, opacity and spherical harmonics
are relatively complex and cannot be easily mixed, so we use a
tri-plane approach to predict them more precisely. Subsequent
experiments also demonstrate that this approach is reasonable.

Specifilly, each 3D Gaussian in our framework contains
a set of pose, rotation, and scale bases, i.e. X ∈ RN×3 ,
Q ∈ RN×4 , S ∈ RN×3, and bias terms p0, q0, s0, instead
of the pose, rotation and scale in original gaussian splatting.
For a given frame i, we utilize the expression weights ei to
blend the pose, rotation, and scale bases P,R, S into frame-
specific coefficients Pi, Ri, Si. This process is mathematically
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represented as:
Pi = P Tei + p0,

Qi = QT · ei + q0,

Si = ST · ei + s0

(4)

Here, P,R, and S are the base pose, rotation, and scale
bases, p0, q0, s0 denotes the pose, rotation and scale bases,
respectively, and ei are the expression weights for frame i.
In our approach, we directly add the quaternions for each
Gaussian and then normalize them. To ensure accurate and
meaningful results, we adjust each quaternion to ensure the
inner products are positive. This adjustment is necessary
because quaternions q and −q represent the same rotation, and
without this step, the averaging process could lead to incorrect
results. In our expriments, we found that the quaternion bases
are relatively close to each other in the rotation space. Thus,
adding them directly and normalizing the result will not cause
significant issues, making the method effective and yielding
satisfactory results.

C. Transformer based Tri-plane Gaussian
Existing approaches [17], [18] treat the alpha and spherical

harmonic parameters the same as other parameters, which
may result in a lack of flexibility in rendering subtle facial
features. GaussianHead [15] employs a tri-plane [19] to in-
ference the alpha and spherical harmonic parameters, but it
does not establish a connection with expression coefficients,
and may lead to inaccurate expressions rendering. In order
to address these issues, we employ a transformer-based tri-
plane decoder to generate tri-plane features, which are then
combined with Gaussian splatting for efficient and high-quality
3D reconstruction and rendering. This section details the steps
involved in our hybrid tri-plane Gaussian approach.

The tri-plane decoder is a 6-layer transformer architecture
to decode the tri-plane features using expression conditions
from a fixed number of learnable tri-plane embeddings {fi}t,
similar to other transformer architecture designs [45], each
transformer block consists of a self-attention layer, a cross-
attention layer, and a feed-forward layer. The expression vector
captures the current frame’s specific details, while the tri-plane
token provides a learnable parameter set that helps in pre-
dicting the tri-plane features. The tri-plane decoder combines
these inputs to predict the tri-plane features. This prediction
is achieved through a series of transformer layers that utilize
the cross-attention mechanism to effectively condition the tri-
plane tokens on the expression vector. The output of the tri-
plane decoder is subsequently reshaped and upsampled to
obtain the final tri-plane representation, which consists of three
orthogonal feature planes: Txy , Txz , and Tyz .

Next, the Gaussians, obtained from the feature blending
process described in the previous section, are used to query the
tri-plane. For each Gaussian, based on its spatial coordinates
(x, y, z), we query the corresponding feature vectors from the
tri-plane. This involves projecting the 3D coordinates onto the
three orthogonal planes and performing trilinear interpolation
to retrieve the feature vectors Fxy , Fxz , and Fyz . These vectors
are then concatenated to form a single hybrid feature vector
for each Gaussian.

Once the hybrid features are obtained, they are fed into a
multi-layer perceptron (MLP) network to predict the opacity α
and the spherical harmonics (SH) coefficients. The MLP takes
the hybrid features as input and outputs the required param-
eters for rendering the Gaussians with accurate lighting and
opacity effects. This step ensures that the complex properties
of opacity and spherical harmonics are precisely predicted,
leveraging the detailed feature representation provided by the
tri-plane.

D. Training

Unlike original 3D Gaussian splatting [1], each Gaussian
in our framework contains a set of pose, rotation, and scale
bases, i.e., P ∈ RN×3, Q ∈ RN×4, S ∈ RN×3, and bias terms
p0, q0, and s0. The opacity and SH coefficients are predicted
using the tri-plane module described in Section III-C, rather
than being directly optimized. We train these variables in
each gaussian, together with other trainable parameters in our
pipeline, including the tri-plane token, the tri-plane decoder
and the MLP network which used to predict opacity and SH
coefficients, respectively.

Our loss function comprises a combination of L1 loss, SSIM
loss, and an additional perceptual loss term, leading to the
following total loss:

Ltotal = L1(Ir, Igt) + λsLSSIM(Ir, Igt) + λpLp(Ir, Igt) (5)

Here, L1 denotes the L1 loss, LSSIM represents the Structural
Similarity Index (SSIM) loss, and Lp is the perceptual loss
based on a pre-trained VGG network. The weights λs and
λp are hyperparameters set to balance the contributions of the
SSIM and perceptual losses.

We start training from 10K uniformly random Gaussians
inside the preset volume. Adaptive densification and pruning
mechanisms are integrated into our training to maintain an
effective representation of the scene. We follow the strategies
outlined in previous work on 3D Gaussian Splatting [1], where
transparent Gaussians (those with opacity α below a threshold
τα) are pruned, and regions requiring more detail are densified
by either cloning or splitting Gaussians based on positional
gradients and Gaussian size.

IV. EXPERIMENTS

In this section, we outline the evaluation protocol and
the experiments conducted to assess the effectiveness of the
proposed method. Subsequently, we present the results across
three different scenarios: head reconstruction, novel view
synthesis, and cross-subject expression driving. Finally, we
perform an ablation study to demonstrate the contribution of
each module in the proposed method.

To ensure a fair comparison, we obtained our data from
public subjects as described by [29], [46]. Each subject’s
training dataset consisted of roughly 3000 to 4000 frames,
while the test dataset comprised the final 3% to 5% of
frames. Specifically, the data for each subject included four
components: RGB head images with a resolution of 512×512,
expression parameters from 3DMM model fitting [47], camera
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS. OUR TGAVATAR METHOD ACHIEVES THE BEST PERFORMANCE ACROSS ALL METRICS.

Method L1↓ PSNR↑ SSIM↑ LPIPS↓
GaussianBlendshapes [18] 0.0089 32.74 0.949 0.079
INSTA [46] 0.0135 29.56 0.913 0.139
FlashAvatar [17] 0.0094 31.86 0.936 0.088
TGAvatar (Ours) 0.0083 33.55 0.953 0.072

parameters, and binary masks. The first three components were
taken from open datasets, whereas the binary masks were
generated using MODNet [48]. We used these binary masks
in the input frames to eliminate the background. For head
movements, the head was fixed in the coordinate system, and
we simulated changes in head poses using camera poses [9],
[29].

Our learning rates for the pose(base P and bias term p0),
rotation(base Q and bias term q0), scale S(base S and bias
term s0), tri-plane token {fi}t, tri-plane decoder and the MLP
network are namely 0.00016, 0.005, 0.001, 0.001, 0.0001, and
0.0001. The Lp loss, which is derived from a VGG network
[49], is assigned a weight of λp = 0.1, while λs = 0.2.
To avoid interference with the photometric loss during the
initial training phase, the Lp loss is activated only after 10,000
iterations. Densification and pruning begins after 500 iterations
and concludes at 10,000 iterations. In our experiments, we
use a Spherical Harmonics (SH) degree of k = 3. Our
models are trained on a single NVIDIA GTX3090 GPU for
a total of 100,000 iterations, which takes approximately 2
hours. In testing, our method achieves an inference speed of
approximately 50 fps.

A. Head Reconstruction

The image in Figure 3 compares the visual performance of
different methods. INSTA [46], FlashAvatar [17] and Gaus-
sianBlendshapes [18], and our TGAvatar, against the ground
truth (GT) in rendering facial avatars under various expressions
and details. The performance of INSTA is inadequate, espe-
cially for expressions involving squinting and pouting, where
it fails to accurately capture the facial deformations, leading
to noticeable artifacts and unrealistic renderings. Additionally,
INSTA struggles to render fine details such as teeth, and has an
obviously smoothing effect in facial details. FlashAvatar, while
generally better, also shows some artifacts, particularly on
teeth and details around the mouth. As evidence, please refer
to the head reconstructed by FlashAvatar in row 1 and row
4. Similar to FlashAvatar, GaussianBlendshapes also failed
to accurately repersent the facial details such as teeth and
eyeglasses, and has an ghosting effect around teeth(row 1)
and an obvious artifact on eyeglasses(row 3). In constract, our
TGAvatar outperforms the above methods, accurately captures
fine details such as teeth, eye squint, reflections and slight
details around the face, providing a more lifelike and accurate
depiction, closely matching the ground truth. This level of
detail and accuracy is challenging for previous head avatar
approaches trained on monocular videos.

The quantitative results shown in Table I further corroborate
the visual superiority of our TGAvatar method. Our approach

achieves the best performance across multiple metrics, with
the lowest L1 error (0.0083), the highest PSNR (33.55), the
highest SSIM (0.953), and the lowest LPIPS (0.072). These
results indicate that our method produces avatars with the
highest fidelity, structural similarity, and perceptual quality
compared to other methods.

B. Novel View Synthesis

Figure 4 demonstrates the model’s capability to maintain
visual coherence and detail across different views. Each novel
view generated by the TGAvatar retains the structural integrity
and detailed texture of the facial features, such as the skin
pores and subtle facial expressions, which are often lost in the
outputs from other models.

C. Cross-Subject Expression Driving

In the cross-subject expression driving experiment, we as-
sess the ability of various methods to transfer facial expres-
sions from a source subject to a target subject while preserving
the target’s unique identity. Figure 5 compares the results
of four different methods: INSTA [46], FlashAvatar [17]
and GaussianBlendshapes [18], and our proposed TGAvatar.
The first column shows the ground truth (GT) expressions,
followed by the results of each method.

The expressions range from pouting and smiling to wide-
open mouth and other complex facial movements. The TGA-
vatar method demonstrates superior performance in maintain-
ing the fine details and realistic appearance of the target
subject’s expressions, outperforming other methods that ex-
hibit artifacts, smoothing effects, and loss of facial detail. For
example, in the first row, our method captures the subtle details
of a pouting expression and eye blinking, which are often
challenging to replicate, while other methods show lack of
mouth details. In the fourth row, our method also performs
better on teeth and facial details rendering. This experiment
highlights the effectiveness of TGAvatar in producing high-
fidelity and lifelike facial animations.

TABLE II
ABLATION STUDY RESULTS. REMOVING ANY KEY COMPONENT LEADS TO

A SIGNIFICANT DROP IN PERFORMANCE, HIGHLIGHTING THEIR
IMPORTANCE IN OUR FRAMEWORK.

Meth L1↓ PSNR↑ SSIM↑ LPIPS↓
Ours w/o tri-plane 0.0095 31.15 0.911 0.082
Ours w/o feature blending 0.0115 30.72 0.892 0.095
Ours w/o Lp 0.0086 32.95 0.934 0.079
Ours 0.0083 33.55 0.953 0.072
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Fig. 3. Qualitative comparisons between our TGAvatar and INSTA [46], FlashAvatar [17] and GaussianBlendshapes [18]. Results are executed under the
configurations specified in their works. For INSTA dataset, INSTA and GaussianBlendshapes provide pretrained models, therefore, these results are evaluated
by their pretrained models. Our TGAvatar achieves better results, particularly in capturing details such as teeth, eyes, wrinkles and reflections.
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Fig. 4. In qualitative results on novel view synthesis, TGAvatar generates
consistent rendering results across these novel views.

Fig. 5. Cross-subject expression driving experiment, various methods are
compared in their ability to transfer expressions from a source subject to a
target subject while maintaining the target’s unique identity. The qualitative
results show that our proposed TGAvatar method outperforms INSTA [46],
FlashAvatar [17] and GaussianBlendshapes [18], accurately capturing fine
facial details and providing lifelike, realistic results with minimal artifacts.

Fig. 6. Qualitative results of the ablation study. The first row focuses on
facial expressions involving lip movements, and the second row highlights
the rendering of teeth and smile details. The full model outperforms both
ablated versions, accurately capturing fine details and complex textures.

D. Ablation Study

To further validate the effectiveness of the key components
in our TGAvatar framework, we conducted an ablation study.
This study focuses on assessing the impact of three primary
components: the tri-plane module, the feature blending tech-
nique, and the perceptual loss. We systematically removed
each component and evaluated the resulting performance.

Firstly, we removed the tri-plane module responsible for
inferring opacity and SH coefficients and instead used the fea-
ture blending technique to estimate these parameters directly.
We refer to this model as Ours w/o tri-plane. Secondly, we
replaced the feature blending technique with an MLP, which
takes the expression coefficients and the pose, rotation, and
scale of each gaussian as input, and predicts the delta pose,
rotation, and scale values. We refer to this model as Ours w/o
feature blending. Finally, we assessed the effect of excluding
the perceptual loss from our training objective. We refer to
this model as Ours w/o Lp.

The qualitative results of our ablation study are depicted
in Figure 6, which illustrates the differences in performance
between the full model and the ablated versions. For example,
in the second row, the comparison focuses on the rendering of
teeth and smile details. The full model accurately captures the
fine details of the teeth and the subtle nuances of the smile.
However, in the Ours w/o tri-plane model, the teeth appear
less defined, and the overall texture is more smoothed out,
showing the importance of the tri-plane module in maintaining
detail and texture quality. The Ours w/o feature blending
model exhibits even greater blurring and a loss of structural
integrity in the teeth, further highlighting the necessity of
feature blending for high-quality avatar reconstruction.

The quantitative results of our ablation study are presented
in Table II. Removing any key component led to a signif-
icant drop in performance, highlighting their importance in
our framework. Without the tri-plane module, the method
struggled to capture fine details and complex lighting effects
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accurately. Replacing the feature blending technique with an
MLP resulted in even more significant performance degra-
dation. Excluding the perceptual loss also led to noticeable
declines in performance.

V. LIMITATIONS AND ETHICAL CONSIDERATIONS

While our TGAvatar framework presents significant ad-
vancements in 3D head animation and reconstruction, it is not
without limitations. One notable limitation is the framework’s
dependency on the diversity of the training data, particularly
in terms of head poses. If certain views, such as side profiles,
are underrepresented or entirely absent in the training data,
the performance of our model may degrade significantly when
generating or reconstructing these unseen angles. This can
result in less accurate or distorted renderings, particularly in
areas with complex geometry or occlusions, such as the ears
or the side contours of the face.

From an ethical standpoint, the ability to create highly
realistic 3D avatars raises important considerations regarding
privacy and consent. The misuse of such technology could
lead to scenarios where individuals’ likenesses are replicated
without their permission, potentially leading to identity theft
or other forms of digital manipulation. It is crucial that
researchers and developers in this field adhere to strict eth-
ical guidelines, ensuring that the creation and use of digital
avatars are conducted with explicit consent and with respect
to individuals’ privacy rights. Furthermore, the potential for
deepfakes and other forms of synthetic media generated by
such technology necessitates ongoing discussions and regula-
tions to prevent misuse.

VI. CONCLUSION

In this paper, we introduced TGAvatar, a novel frame-
work that leverages the power of 3D Gaussian Splatting and
advanced modeling techniques to achieve high-fidelity 3D
head animation and reconstruction. By integrating a tri-plane
module for precise opacity and spherical harmonics inference
and employing a feature blending technique inspired by 3D
Morphable Models, our method significantly enhances the
realism and detail of facial avatars, while rendering on real-
time frame rates. Our comprehensive evaluations demonstrate
that TGAvatar not only surpasses existing methods in terms
of rendering quality and computational efficiency but also sets
a new benchmark for the field. Our future work will focus
on further optimizing the method for broader applicability,
enhancing robustness under diverse conditions.
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